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ABSTRACT

This paper presents an automatic method for segmentation of Multiple Sclerosis (MS) in Magnetic Resonance
Images (MRI) of the brain. The approach is based on similarities between multi-channel patches (T1, T2 and
FLAIR). An MS lesion patch database is built using training images for which the label maps are known. For
each patch in the testing image, k similar patches are retrieved from the database. The matching labels for
these k patches are then combined to produce an initial segmentation map for the test case. Finally a novel
iterative patch-based label refinement process based on the initial segmentation map is performed to ensure
spatial consistency of the detected lesions. A leave-one-out evaluation is done for each testing image in the MS
lesion segmentation challenge of MICCAI 2008. Results are shown to compete with the state-of-the-art methods
on the MICCAI 2008 challenge.

1. INTRODUCTION

Patch-based methods for segmentation have been shown to be an effective approach for labeling brain structures
(and other body structures), as shown for example in,1,2 and recently for lesions in.3 In general, these approaches
label each voxel of a target image by comparing the image patch centered on the voxel with patches from an atlas
library, and assign the most probable label according to the closest matches. Often, a localized search window
centered around the target voxel, is used. Various patch-based label fusion procedures have been proposed and
were shown to produce accurate and robust segmentation. Using affine registration, comparable results are shown
to works that use non-rigid registration. The focus of the segmentation task in existing works is on regions of
interest which are substantial in size and/or are anatomically localized. Thus, a good approximate alignment
of the image to an atlas is needed and is a key component. In the current work we extend the investigation of
patch-based approaches to the task of MS lesion detection and segmentation in MR images of the brain. The
challenges we face include the following: MS lesions are very small. They can appear anywhere in the brain
image, and no atlas currently exists for MS lesion data. Examples of MS lesions are presented in Fig. 3.

MS is the most common non-traumatic neurological disease in young adults. It is an inflammatory demyeli-
nating disease that is primarily associated with axonal loss and formation of lesions in the central nervous system,
which are characterized by demyelination, axonal injury and axonal conduction block. These classically-described
white matter (WM) lesions are visible in conventional magnetic resonance imaging, appearing hyperintense in
T2-weighted (T2w) images and hypointense in T1-weighted (T1w) images. Fluid attenuated inversion recovery
(FLAIR) images have been shown to be the most sensitive to WM lesions, but can also present other hyper-
intensity artifacts.4

Manual segmentation of WM lesions is a time-consuming process. Furthermore, the 3D data of an MRI scan
requires multi-slice segmentation which makes the manual segmentation an overall untangeable task.5 Fully
automated algorithms for MS lesion detection and segmentation have been the focus of research for many years.
Due to the complexity of the task and the recent understanding that the task is yet unsolved, the performance
of these algorithms is still being challenged and new algorithmic approaches have recently been introduced.3,6–9

Recent methods have been developed through the MICCAI08 grand challenge.10 This challenge is helping to
advance the field by providing a dataset for evaluation and comparison across the developed techniques.

In the current work we introduce a novel patch-based approach for MS lesion detection and segmentation.
The integration of the spatial information to this method is the main contribution of the work. The proposed
framework segments the MS image without requiring registration and with no need for an atlas.
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2. PATCH-BASE SEGMENTATION AND LABEL REFINEMENT

Our method is based on labeling the test image voxels (as lesion or non-lesion) by finding similar patches
in a database of manually labeled images. The training step involves constructing a patch database using
expert-marked lesion regions which provides voxel-level labeling. Given a test image, we first detect candidate
lesion regions for further analysis. For all candidate voxels we find the k-nearest neighbor patches from the
patch database. Labels of the selected patches are used to determine the current patch label, using a voting
scheme, thus generating the test image label map. Finally, in order to enforce spatial consistency, we iteratively
incorporate a label decision from the neighboring voxels obtained during the previous iteration, by adding them
to the k-NN metric. In the following subsections we provide a detailed description of the algorithm.

2.1 Creation of a labeled Patch Database

Before starting the segmentation process (in the training phase as well as for a new test image), the followed pre-
processing steps were taken: brain extraction, intensity non-uniformity correction, sub-sampling and normaliza-
tion.

Figure 1. ROI (blue) on a FLAIR image.

In the training step, we extract regions-of-interest (ROIs) around
all manually marked lesions. An ROI is defined as a bounding
box of the lesion. Note that we expand the borders of the bound-
ing box by a few voxels (three) in order to capture the surrounding
tissue as well. ROIs therefore represent the lesion and non-lesion
areas in the brain in a roughly balanced way. From each ROI,
and for each input channel, we then extract 3x3x3 patches. In this
work, we treated the three modalities equally. Patches are con-
catenated across the input channels to form augmented patches
(hereon we refer to patches as the concatenated patches). This
set of patches forms the training patch database D (in our imple-
mentation we used 130,000 patches).

2.2 Generation of an Initial Label Map

Following the procedure described above, the voxels marked by
the mask are further analyzed towards classification as lesion or
non-lesion using a patch-based decision method. The patch-base
segmentation strategy is based on the non-local-means estimator
introduced by Buades et al.11 This method has been studied
in a variety of tasks.1,2 In this approach, similarities between
multi-channel patches are used. After patches are extracted from
several MR channels for a test case, similar patches are found in
the labeled database described above. These labels are combined
to yield a lesion segmentation map.

In the patch matching step for each voxel x in the test image, we extract a corresponding patch Px centered at
x. We then retrieve k similar patches PD

i (x), i = {1 . . . k} from the database D. Each selected patch is weighted
as follows:

w(x, PD
i ) = exp

(
−dI(Px, P

D
i (x))

σ2

)
(1)

where dI(·, ·) is the intensity based square Euclidean distance and σ2 is the maximum distance measure obtained
for all the voxels x and for all the patches in the database D.

To obtain a label for a test voxel x, a vote aggregation method is defined using all labeled patches extracted
via the k-NN patch matching procedure. The voxel x appears in 27 test patches which are centered on x and
centered on its neighboring voxels. For each test patch we extract k nearest neighbor labeled patches from the
data-set D. Each retrieved similar patch, along with its labels and its weight, contributes a vote. Thus, for a
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given voxel x we have 27 · k votes that are averaged. The aggregation of votes results in a probabilistic lesion
decision, as follows:

p(lesion|x) =

∑
y∈Px

∑k
i=1 w(y, PD

i (y)) · lDi (y, x)∑
y∈Px

∑k
i=1 w(y, PD

i (y))
(2)

where y goes over the 27 neighboring voxels of x and lDi (y, x) is the label that the training patch PD
i (y) (which

is similar to the patch centered at y) assigns to x. The final lesion label, L(x), for each voxel x, is determined as
1 if p(lesion|x) > 0.5 and 0 otherwise. This content-based segmentation process results in an initial label map.

2.3 Patch-based Label Refinement

The above procedure treats each voxel independently and ignores spatial consistency constraints. For example,
a case may occur where a single voxel is labeled as non-lesion even though all its neighboring voxels are labeled
as lesions. In the following, we focus on incorporating spatial consistency into the lesion map result. Spatial
information was shown to improve performance.5 For example, in12 a refinement step based on anatomical
information was included.

In our method we enforces spatial consistency using a new metric for the patch-based voting aggregation
algorithm described above. The new metric uses the current label map in addition to the intensity information.
A weighting parameter, α, is used to determine the relative importance of the intensity similarity and the spatial
consistency constraint. This new metric is used in the patch matching step and in the vote weighing step. The
metric between a test patch Px and a training patch PD is defined as follows:

d(Px, PD) = dI(Px, PD) + α · dL(Px, PD) (3)

where dI(·, ·) is the intensity based metric described above and dL(Px, PD) is the square Euclidean distance
between the current labels of the patch Px and the labels of training patch PD. A larger weight parameter α,
tends to favor the current labeling decision of the algorithm. We use the following definition for the weight:

αt = α0 ∗ (t− 1) (4)

with constant α0 ensuring that the intensity metric and label metric are on the same scale and t is the iteration
number. In the first iteration, α = 0; thus we start with the patch-based method as described in Section 2.3.
As α is increased from one iteration to the next, it gives more weight to labels of the nearest-neighbor training
patches in making the current label decision. A large α ensures that the labels of the nearest-neighbor training
patches coincide with the current label decision and therefore the algorithm converges. We have found that in
practice there is no need for more than 5-6 iterations until convergence.

Our method imposes a global consistency constraint between the labels of neighboring voxels in an efficient
way. For each patch we find the most similar patch based on intensity while also taking into account spatial
compatibility with the neighboring voxels. The initial patch-based segmentation results are sensitive to small
hyper-intense regions that are caused by noise and inhomogeneities. These regions contain patches that are
similar to lesion patches. The majority of these voxels are correctly labeled as non-lesions during the refinement
stage.

3. EXPERIMENTAL RESULTS

We evaluated our framework using clinical data provided by the MS lesion segmentation challenge which was
introduced at the MICCAI MS lesion segmentation workshop 2008.10 The most recent works in the field use this
dataset as it provides a benchmark for algorithm comparisons. We used all cases from the University of North
Carolina (UNC) dataset in the provided resolution of 1mm3 isotropic in three different modalities (T1w, T2w
and FLAIR). Our procedure was evaluated in a leave-one-out framework. We computed true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN), and used the following validation measures:

• True Positive Rate: TPR = TP
TP+FN .
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Table 1. TPR/PPV/DSC results (%) on clinical brain image data from the MICCAI 08 challenge.10 Our method is compared to
three state-of-the-art methods.

Souplet7 Geremia6 Weiss8 Patch-based

Patient TPR PPV TPR PPV TPR PPV DSC TPR PPV DSC

UNC01 1 1 2 1 33 29 31 0 0 0
UNC02 37 39 48 36 54 51 53 67 34 45
UNC03 12 16 24 35 64 27 38 57 25 35
UNC04 38 54 54 38 40 51 45 65 17 27
UNC05 38 8 56 19 25 10 16 36 9 14
UNC06 57 9 15 8 13 55 20 37 69 48
UNC07 27 18 76 16 44 23 30 51 48 49
UNC08 27 20 52 32 43 13 20 24 11 15
UNC09 16 43 67 36 69 6 11 29 35 32
UNC10 22 28 53 34 43 23 30 44 45 45
Average 28 24 45 26 43 29 29 41 29 31

Figure 2. Comparison of alg. segmentation results and the expert’s manual segmentation. Left column - FLAIR image. Middle
column - expert’s manual segmentation. Right column - alg. segmentation results. In the right col- TP=white, FP=green, FN=pink
and TN=black.)
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• Positive Predictive Value: PPV = TP
TP+FP .

• Dice Similarity Coefficient: DSC = 2·TP
FP+FN+2·TP .

The measures were computed using the expert label map provided in the dataset. The scores appear in Table 1
along with a comparison to three state-of-the-art works using the same dataset. Note that DSC measures were
not provided by the authors in the first two methods.

Figure 3. Two segmentation examples (top: UNC06, bottom: UNC02): (a) FLAIR image; (b) first iteration; (c-e) iterations 2,3 and
5; (f) ground truth. Proposed method in Blue; Reference segmentation in Red.

The proposed method achieved a mean TPR of 41%, a mean PPV of 29% and a mean DSC of 31%. These
results are comparable with state-of-the-art algorithms. Two successful segmentation examples are shown in Fig.
3. The input image is presented in Fig. 3(a) and the final segmentation map is shown in Fig. 3(e). The similarity
to the reference segmentation, shown in Fig. 3(f), is evident. We note the substantial decrease in FPs, as part of
the algorithm iterative refinement procedure, in both cases. The reduction in FPs is most significant in the sec-
ond iteration. We also observe an increased number of border voxels being classified as lesions in iterations 3 to
5. Thus overall we get a significant decrease in the quantity of the FPs and an increase in all the measured indices.

To conclude, we presented a novel framework for patch-based segmentation that integrates intensity informa-
tion with a patch-based label refinement. The proposed framework segments the MS image without requiring
registration and with no need for an atlas. This makes the framework robust to registration errors which occur,
particularly if there is a high degree of anatomical variability. We applied our approach to clinical image data from
the MS lesion challenge. The results are competitive with state-of-the-art methods, achieving an average DSC of
31%. This framework could be coupled with dictionary learning, as well as additional pre- and post-processing
to improve performance. Future work entails improving the results using better database characterization and
advanced metric learning. Evaluation of our algorithm on larger datasets from varying input sources will allow
us to test the robustness of the algorithm to noise and other variance.
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